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The phase-field-crystal model �K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 �2004�� produces
multigrain structures on atomistic length scale but on diffusive time scales. Since individual atoms are resolved
but are treated identically it is difficult to distinguish the exact position of grain boundaries and defects within
grains. In order to analyze and visualize the whole grains a two-dimensional wavelet transform has been
developed, which is capable of extracting grain boundaries and the lattice orientation of a grain relative to a
laboratory frame of reference. This transformation makes it possible not only to easily visualize the multigrain
structure, but also to perform exact measurements on low- and high-angle boundaries, grain size distributions
and boundary-angle distributions, which can then be compared to experimental data. The presented wavelet
transform can also be applied to results of other atomistic simulations, e.g., molecular dynamics or granular
materials.
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I. INTRODUCTION

A recently developed phase-field-crystal �PFC� model �1�
describes nonequilibrium processes in materials such as so-
lidification, grain growth, epitaxial growth, and material
hardness. The PFC model takes into account elastic proper-
ties of materials and, for the first time in phase-field model-
ling, the actual lattice structure. The order parameter describ-
ing the density field on the nanoscale is constant in the liquid
phase and periodic in the solid phase. Since the model works
on atomistic length scales, simulating interesting dynamics
on the mesoscale requires extremely large computational do-
mains. A renormalization group approach was applied in Ref.
�2� to parametrize the density field in terms of a uniform
phase and an amplitude. This approach allows to solve the
PFC equation on the mesocale using adaptive meshes and
then to reconstruct the density field on the nanoscale.

The renormalization group approach is very efficient nu-
merically and provides the lattice orientation information,
however this information can only be retrieved if the PFC
equation is renormalized and solved in terms of the phase
and amplitude from the very beginning.

As opposite to the conventional phase-field models for
grain growth �3,4�, the PFC method does not have a mecha-
nism to distinguish between areas with different lattice ori-
entations, i.e., grains. When the PFC equation is solved di-
rectly, i.e., for the density field, as has been proposed in the
original PFC paper �1�, analysis and visualization of a grain
structure are difficult even in relatively small domains con-
taining only several thousand atoms.

The equation of motion for the time averaged evolution of
the density field � is derived from a dimensionless free en-
ergy functional

F =� dr��

2
�r + �1 + �2�2�� +

�4

4
� , �1�

where G��2�= �1+�2�2 is the functional form of a fit to the
first order peak of an experimental structure factor and r is
the dimensionless undercooling. The resulting time-depen-
dent density field equation is derived from the functional
derivative by the Cahn-Hilliard formalism,

��

�t
= �2�r + �1 + �2�2� + �3� . �2�

The equation contains a sixth order spatial derivative and
therefore requires very small time steps if solved with an
explicit finite difference scheme.

In the case of classical molecular dynamics simulations
every single particle, its position and velocity at every time
step is known. In the simplest case of monoatomistic simu-
lations the next time step is calculated based on the current
position and velocity and the interaction forces with �in prin-
ciple� all other atoms in the simulation domain based on the
classical Newton equations of motion �5�

m
d2ri�t�

dt2 = fi = �
j=1,j�i

Nat

fij, �3�

where ri is the position of the ith atom and fij=−�U�r�
=−�U�	ri−rj	� is the pairwise force calculated from a po-
tential function U.

In this kind of simulation solidification of small grains or
clusters can be produced. A convenient measure of atomistic
defects in the crystalline structure is the particle potential
energy
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4
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Uij , �4�

where Uij =U�	ri−rj	� is the pairwise potential energy inter-
action between the atom i and another atom j. Since the
potential for monoatomistic simulations is only a function of
the distance between the atoms, it is rotational invariant.
Therefore a solidified structure such as a set of grains has the
same potential energy everywhere when the crystal lattice is
regular independent of the orientation. The potential energy
reveals only differences on the grain boundaries and at lattice
defects. In order to find the grain orientation additional mea-
surements must be performed. As will be shown the tech-
nique developed to visualize and analyze the continuum PFC
simulations proves also to be useful as an alternative and
additional evaluation tool for molecular dynamics simula-
tions.

Wavelets are mathematical functions with a compact sup-
port, which analyze different frequency components with a
resolution matched to their scale. An advantage over conven-
tional Fourier methods is that they give a better spatial reso-
lution where a frequency component is to be found in com-
parison to windowed Fourier transforms or Gabor trans-
forms. Wavelets are used in a variety of fields reaching from
mathematics and quantum physics to electrical engineering
and seismic geology �e.g., Refs. �6–9��.

In order to visualize their results Elder and Grant �1� used
a smoothing density field method, which when applied to the
results of the PFC calculations revealed grain boundaries and
lattice defects as local energy density. This approach, how-
ever does not provide any information about the grain orien-
tation, since the smoothing is rotational invariant. In order to
find the lattice orientation two trivial approaches can be
imagined: �1� find for every atom its neighboring atoms and
calculate the angle with respect to a laboratory frame. This
approach is in principal straightforward, however it is soon
discovered that �i� it is not so easy to detect the positions of
the atoms since their maximum might not coincide with the
raster of the computational domain and �ii� especially in the
regions with lattice defects or grain boundaries it is not clear
at all how to define the nearest neighbors, and �iii� due to the
above reasons even on a regular lattice calculating the angle
is error-prone. �2� The second approach is slightly more el-
egant: by selecting an atom and a neighborhood of 2n �n
=5–7� grid points a fast two-dimensional �2D� Fourier trans-
form is applied on this domain. On a regular lattice the ori-
entation of the lattice is highlighted as a spike in the Fourier
spectrum. The procedure becomes problematic however in
the case of multiple lattices or lattice defects which destroy
the spikes and add noise to the spectrum, which makes a
grain orientation detection for this point at least difficult if
not impossible. Because of the above-mentioned reasons a
straightforward approach to a visualization of grain bound-
aries and simultaneously grain orientations is not possible.
Therefore a special approach combining the smoothing for
constant lattice structures while preserving their grain orien-
tation, without having to deal with the above described dis-
advantages, is desirable. In this paper we present a developed

2D continuous wavelet transform, which allows one to visu-
alize and analyze results of large-scale atomistic simulations
especially produced by the original PFC method proposed in
Ref. �1� for a big domain of tens of thousands to millions of
atoms.

II. 2D CONTINUOUS WAVELET TRANSFORM

The PFC model describes the temporal evolution of a
density field ��x ,y�. The crystal phase is given as a constant
value in the liquid and an oscillatory function in the solid. In
2D the oscillatory function describes a hexagonally closed
packed pattern. A fully solidified crystal without defects can
be described as the superposition of three planar waves

��x� = �x,y�� = A0 + a�cos�k�1 · x�� + cos�k�2 · x�� + cos�k�3 · x��� ,

�5�

where A0 is an assumed constant background and a is the
amplitude of the hills. The vectors k�1, k�2, and k�3 define the
three base vectors of the hexagonal lattice. The vectors are
coupled through k�2=R�/3�k�1�, k�3=R�/3�R�/3�k�1��, where
R��v�� is the 2D rotation of the vector v by an angle �.

In order to find the different lattice orientations and thus
distinguish the different grains we use the wavelet formalism
and introduce a mother wavelet. Since the lattice spacing and
thus the frequency is the same in all grains we fix our wave-
let scale on only one particular scale—the one of the lattice
frequency. Opposite to the more traditional mother wavelets
such as Morlet, Gaussian, Mexican hat or others �6� we in-
troduce a continuous wavelet, which is two dimensional and
matches the requirements of the lattice structure. The wave-
let is shown in Fig. 1 and is defined as

ws0
=

1

��

e−�x2+y2�/2�
„cos�k�s0

· x�� + cos�R�/3�k�s0
� · x��

+ cos�R�/3�R�/3�k�s0
�� · x��… , �6�

where the parameter s0 and subsequently ks0
define the base

scale in which we are interested and � defines the Gaussian

FIG. 1. �Color online� The continuous 2D wavelet. The shape of
the wavelet is adjusted to the hexagonal lattice structure produced
by the PFC method.
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support of the wavelet. Applying this wavelet on the domain
��x ,y� transforms the lattice structures into a similar pattern
where the amplitude a is now dependent on the orientation.
Therefore the average intensity of the grain is a function of
the orientation. In order to transform the oscillation into a
constant value we apply a Gaussian transformation

G�x,y� =
1


��2

e−�x2+y2�/2�2, �7�

where �2 defines the smoothing range of the Gaussian filter.
Combining Eqs. �6� and �7� we find �̃�x ,y�

= ����ws0
��G��x ,y� where � defines the convolution opera-

tor. More explicitly �̃�x ,y� is written as

�̃�x,y� = �
−�

� �
−�

� ��
−�

� �
−�

�

��t,u�ws0
�t − v,t − w�dtdu�

�G�v − x,w − y�dvdw . �8�

The intensity �̃�x ,y� is a function of the lattice mismatch
between the grain orientation at the position �x ,y� and the
laboratory frame of reference. The intensity depends nonlin-
early on this mismatch angle. In Fig. 2 the transformation is
plotted. In order to find the angle the average intensity of the
grain is calculated and then transformed back with help of
the transfer look-up table of Fig. 2.

For the implementation we have introduced two 2D filter
templates t1 and t2 with the size N=41, which define two
N�N finite supports for the transformations given by Eqs.
�6� and �7�. This size is suitable to accommodate several
atoms for the chosen set of simulation parameters, which led
to an average distance of davg=9 grid points between the
atoms in the solidified structure, thus ks0

=2� /davg. The tem-
plates were filled with values according to Eqs. �6� and �7�
with �=0.3N and �2=0.5N with the origin taken in the cen-
ter of the templates. Subsequently the simulation data was
convolved with t1,

�1,i,j = �
l=−N/2

N/2

�
m=−N/2

N/2

t1,N/2+m,N/2+l�i+m,j+l. �9�

And then �̃ was obtained by convolving �1 with t2 in the
same way.

III. RESULTS

First, we demonstrate the results of the PFC simulations
and subsequent wavelet transformation in a computational
domain of size 512�512 grid nodes, which contains ap-
proximately 4000 atoms. The size of the domain is in pur-
pose taken very small in order to demonstrate the lattice
structure of the grains. The parameters used for the PFC
simulations are r=−0.25 and �̄=−0.28. Figure 3�a� shows the
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FIG. 2. The intensity profile depends nonlinearly on the lattice
mismatch angle. The angle is found first by calculating the average
intensity of the grain and then the use of this plot as a look-up table.

(a)(a)

(b)

FIG. 3. �Color online� �a� The density field calculated by the
PFC model in a 512�512 box. �b� The corresponding grain struc-
ture obtained by the 2D wavelet transformation. The different grains
contain a constant value depending on their orientation. The value
changes only at the grain boundary.
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density field obtained by the PFC simulations. One observes
a well-defined lattice structure within each grain. In this
small domain it is also possible to extract visually the posi-
tion of the grain boundaries and missorientation between the
grains. A corresponding grain structure produced by the
wavelet transformation is shown in Fig. 3�b�. Every grain
can easily be identified by its gray scale intensity dependent
on the lattice orientation, where white depicts a maximal
alignment and black a maximal mismatch.

Next the PFC simulations were performed in the domain
of 4096�4096 grid nodes, which contains approximately
262 100 atoms. Obviously, no information can be extracted
visually from the density field even on a large computer
screen. Figure 4 demonstrates the result of the wavelet trans-
formation applied to the density field. The location of the
grains, grain boundaries and lattice defects are clearly pro-
nounced. The transformation also indicates very accurately
the lattice defects within a single grain. Examples can be
found in Fig. 4 in several grains. It is interesting to note that
a lattice defect can influence the orientation of the whole
grain. In the white box on the right-hand side of Fig. 4 there
is a grain, which changes its orientation gradually due to a
defect.

The wavelet transform also allows to easily analyze the
grain formation produced by the PFC method. In particular,
it is possible to evaluate automatically the number of atoms
within each grain. A histogram showing the distribution of
grain sizes is given in Fig. 5. The average grain radius is
about 55 atoms for the grain structure in Fig. 4. In the analy-
sis, the grains, whose lattice orientation varied more than 5%
due to presence of defects, were classified as two grains. This
technique can be applied for studying grain coarsening,
which is an important problem in materials science �e.g.,
Refs. �10–12��. Also, the wavelet transformation automati-
cally reveals low- and high-angle grains when the two neigh-

boring grains have similar and different gray levels, respec-
tively.

Elder and Grant �1� have demonstrated that the PFC
method reproduces correctly the Read-Shockley grain
boundary energy for small missorientations. In order to
evaluate the Read-Shockley energy it is essential to know the
distribution of dislocations at the grain boundary. While it is
straightforward to do it for planar grain boundaries using
geometrical arguments, defining positions of the dislocations
on curved grain boundaries can be difficult. The wavelet
transform allows to extract information on the dislocation
distribution for curved boundaries for small enough missori-
entations angles ��12–15 degrees�. As an example, Fig. 6
shows an arbitrarily shaped grain embedded in a large grain
whose orientation differs by 8 degrees as a density field �a�
and the corresponding wavelet transform �b�. Obviously, the
wavelet transform provides a clear picture on the number of
dislocations and their positions. They can be found automati-
cally by selecting the extrema of the white regions.

The study of atomistic grain boundaries in molecular dy-
namics has recently gained more attention. On the one hand,
it is possible to calculate the interfacial stiffness from the
atomistic fluctuations of the solid-liquid interface �13� and
therefore the strength of the anisotropy of surface free en-
ergy. On the other hand, the atomistic behavior of solidified
grains and their evolutions is subject of research for short
time scales accessible in MD simulations as well �14�. In
Fig. 7�a� a very simple constellation of two misoriented
grains and their grain boundary is plotted. The atoms at the
grain boundary possess a higher potential energy than the
atoms in the regular crystal lattice of the grains. The poten-
tial energy is a convenient means to find the grain boundary
between grains, however its value is identical in any grain
that has an ordered lattice structure. The presented wavelet
transform can be used to extract this information easily by
rasterizing the domain and substituting the positions of the
atoms with a short-range continuous function

FIG. 4. The grain structure obtained by the 2D wavelet trans-
formation of the density field calculated by the PFC model in a
4096�4096 box. The intensity corresponds to the grain orientation.
The white box shows a grain where a defect causes the grain’s
orientation to change.

FIG. 5. Histogram of the grain size distribution of Fig. 4, where
on the x axis “nr” denotes the number of atoms.
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vi+l,j+m�k� = �
n=1

Nat

Bacos� i�k� + l

a
�� + cos� j�k� + m

a
���

�10�

with −a� l�a , −a�m�a where vij is the value at the ras-
ter position �i , j� calculated for the atom k �i�k� , j�k��, and
Ba�d�=d for d�a and otherwise zero. The principle is sim-
ply to replace the position of the atoms by a cosine-shaped
bump around every atom in the raster. This leads to a similar
raster image as Fig. 3�a�. The according wavelet transforma-
tion is shown in Fig. 7�b�. While for this example the trans-
formation seems overly elaborate it can easily be imagined
that large scale MD simulations with a multitude of grains
would benefit from this transformation in order to extract the
orientation of the grains as an alternative analysis method.

IV. GENERALIZATION

The presented wavelet can easily be extended and gener-
alized �i� to analyze three-dimensional data and �ii� to in-
clude different lattice structures or different sorts of atoms

(a)

(b)

FIG. 6. �Color online� An arbitrarily shaped grain embedded in
a larger grain shown as �a� density field, �b� corresponding wavelet
transform. The misorientation between the two grains is 8 degrees.
The wavelet transform reveals clearly the location of dislocations at
the grain boundary as white maxima. The simulation was performed
in a 512�512 box.

(a)

(b)

FIG. 7. �Color online� �a� Two grains in a molecular dynamics
simulation in order to investigate the atomistic behavior at the grain
boundary �courtesy of T. Uehara, Nagoya University, Japan�. The
atoms near the grain boundary have a higher potential energy than
the ones far away from the grain boundary. Their potential energy is
identical in both grains independent on orientation. �b� Application
of the 2D wavelet transform, which in this case extracts the orien-
tation of the grains in the MD simulations.
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e.g., for binary alloy systems�. Equation �6� was developed
with a 2D fcc or hexagonal lattice in mind. In a more general
way the equation can be rewritten as

ws0
=

1

��

exp−�i=1
d xi

2/2�Vs0
�x1, . . . ,xd� , �11�

where d is the dimension and Vs0
is a representative descrip-

tion of the lattice defined in the support region of the Gauss-
ian, which is relevant at the scale s0. Since the goal is not to
analyze the structure at different scales Vs0

can be chosen to
be the repeated unit cell over the support, where the unit cell
may contain different sorts of atoms.

V. CONCLUSION

We have presented a 2D continuous wavelet transform,
which allows the analysis and visualization of large scale
atomistic simulations. Applied to the density field produced
by the PFC model, the wavelet transform extracts the grains
and their orientation with respect to a laboratory frame of
reference. This simplifies the task of determining grain sizes

and grain boundary angles. Applied to rasterized MD data
the transform serves as an alternative tool, additional to the
potential energy, to analyze and visualize solidified grains.

Additional to its originally intended use for the large do-
mains of the PFC model the presented method has other
potential applications, for example, in high resolution elec-
tron microscopy, where grain boundaries are still mostly
evaluated manually, flux lines of superconductors or images
of experiments with hard spheres or simulations thereof
�granular media�. We believe that the presented method
might be applied also in other physical phenomena where
atomistic or spherical particles are to be analyzed in a larger
scale.
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